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The Standard Model of particle physics describes all of the known fundamental particles
and the electroweak and strong forces that, in combination with gravity, govern today’s
Universe. The observation that neutrinos have mass is one demonstration that the Standard
Model is incomplete. By exploring physics beyond the Standard Model, LBNE will address
fundamental questions about the Universe:

What is the origin of the matter-antimatter asymmetry in the Universe? Immediately af-
ter the Big Bang, matter and antimatter were created equally, yet matter now domi-
nates. By studying the properties of neutrino and antineutrino oscillations, LBNE is
pursuing the most promising avenue for understanding this asymmetry.

What are the fundamental underlying symmetries of the Universe? Resolution by LBNE
of the detailed mixing patterns and ordering of neutrino mass states, and comparisons
to the corresponding phenomena in the quark sector, could reveal underlying symme-
tries that are as yet unknown.

Is there a Grand Unified Theory of the Universe? Experimental evidence hints that the
physical forces observed today were unified into one force at the birth of the Universe.
Grand Unified Theories (GUTs), which attempt to describe the unification of forces,
predict that protons should decay, a process that has never been observed. LBNE will
probe proton lifetimes predicted by a wide range of GUT models.

How do supernovae explode? The heavy elements that are the key components of life —
such as carbon — were created in the super-hot cores of collapsing stars. LBNE’s
design will enable it to detect the neutrino burst from core-collapse supernovae. By
measuring the time structure and energy spectrum of a neutrino burst, LBNE will be
able to elucidate critical information about the dynamics of this special astrophysical
phenomenon.

What more can LBNE discover about the Standard Model? The high intensity of the
LBNE neutrino beam will provide a unique probe for precision tests of Standard
Model processes as well as searches for new physics in unexplored regions.

1

LBNE has been designed to address a wide range of scientific topics using well-characterized,2

high-intensity, accelerator-based neutrino beams, a long baseline for neutrino oscillations, and a1

very large, deep-underground detector with excellent particle identification capabilities over a large1
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range of energies. While maximizing the reach for a core set of scientific objectives, its design —1

described in Chapter
project-chap
3 — accommodates the flexibility to extend the scope of measurements as1

additional resources become available.1

2.1 Scientific Objectives of LBNE1

The scientific objectives of LBNE have been categorized into primary, secondary, and additional2

secondary objectives according to priorities developed and agreed upon by the LBNE community3

and accepted as part of the CD-0 (Mission Need) approval by the U.S. Department of Energy
DOCDB3056
[41].4

Primary objectives of LBNE, in priority order, are the following measurements:5

1. precision measurements of the parameters that govern νµ → νe oscillations; this includes6

precision measurement of the third mixing angle θ13, measurement of the charge-parity (CP)7

violating phase δCP, and determination of the neutrino mass ordering (the sign of ∆m2
31 =8

m2
3 −m2

1), the so-called mass hierarchy9

2. precision measurements of the mixing angle θ23, including the determination of the octant in10

which this angle lies, and the value of the mass difference, |∆m2
32|, in νµ → νe,µ oscillations11

3. search for proton decay, yielding significant improvement in the current limits on the partial12

lifetime of the proton (τ /BR) in one or more important candidate decay modes, e.g., p →13

K+ν14

4. detection and measurement of the neutrino flux from a core-collapse supernova within our15

galaxy, should one occur during the lifetime of LBNE16

In a phased approach to LBNE, the goal of the first phase is to maximize the effectiveness of17

the facility to achieve the first two objectives, above. The mass hierarchy determination and the18

precision determination of θ23 will most likely be complete in the first phase of LBNE; while the19

precision determination of CP violation will require the full-scope LBNE, an initial measurement20

of the CP phase parameter δCP will be performed in earlier phases.21

Secondary objectives, which may also be enabled by the facility designed to achieve the primary22

objectives, include:23

1. other accelerator-based, neutrino oscillation measurements; these could include further sen-24

sitivity to Beyond Standard Model (BSM) physics such as nonstandard interactions25

2. measurements of neutrino oscillation phenomena using atmospheric neutrinos26

3. measurement of other astrophysical phenomena using medium-energy neutrinos27

The Long-Baseline Neutrino Experiment
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Additional secondary objectives, the achievement of which may require upgrades to the facility28

that is designed to achieve the primary physics objectives (e.g., deployment of additional detector29

mass or alternate detector technologies), include:30

1. detection and measurement of the diffuse supernova-neutrino flux31

2. measurements of neutrino oscillation phenomena and of solar physics using solar neutrinos32

3. measurements of astrophysical and geophysical neutrinos of low energy33

In addition, a rich set of science objectives enabled by a sophisticated near neutrino detector have34

been identified. A primary and a secondary objective, respectively, are:35

1. measurements necessary to achieve the primary physics research objectives listed above36

2. studies of neutrino interactions that may be enabled either by the facility designed to achieve37

the primary objectives or by future upgrades to the facility and detectors; these include pre-38

cision studies of the weak interaction, studies of nuclear and nucleon structure, and searches39

for new physics40
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2.2 Neutrino Three-Flavor Mixing, CP Violation and the41

Mass Hierarchy1

ss:oscphysics

The Standard Model of particle physics (Figure
fig:standardmodel
2.1) presents a remarkably accurate description of2

the elementary particles and their interactions. However, its limitations beg deeper questions about3

Nature. The unexplained patterns of quarks, leptons, flavors and generations imply that a more4

fundamental underlying theory must exist. LBNE plans to pursue a detailed study of neutrino5

mixing, resolve the neutrino mass ordering, and search for CP violation in the lepton sector by6

studying the oscillation patterns of high-intensity νµ and νµ beams measured over a long baseline.
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Figure 2.1: Known particles and forces in the Standard Model of particle physics. The quarks and leptons are
arranged in pairs into three generations: (u, d), (c, s), (t, b) and (νe, e), (νµ, µ), (ντ , τ), respectively. There
are three known neutrino mass states ν1, ν2, ν3 which are mixtures of the three neutrino flavors νe, νµ, ντ
shown in this figure. The Standard Model includes the gluon (g), photon (γ) and (W±, Z0) bosons that
are the mediators of the strong, electromagnetic and weak interactions, respectively. The Higgs boson is a
manifestation of the Higgs field that endows all the known particles with mass.

7

8
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Results from the last decade, indicating that the three known types of neutrinos have nonzero
mass, mix with one another and oscillate between generations, imply physics beyond the
Standard Model

Mohapatra:2005wg
[42]. Each of the three flavors of neutrinos, νe, νµ and ντ (Figure

fig:standardmodel
2.1),

is known to be a different mix of three mass eigenstates ν1, ν2 and ν3 (Figure
fig:pmns
2.2). In the

Standard Model, the simple Higgs mechanism, which has now been confirmed by the obser-
vation of the Higgs boson

Aad:2012tfa,Chatrchyan:2012ufa
[43,44], is responsible for both quark and lepton masses, mixing

and charge-parity (CP) violation (the mechanism responsible for matter-antimatter asym-
metries). However, the small size of neutrino masses and their relatively large mixing bears
little resemblance to quark masses and mixing, suggesting that different physics — and pos-
sibly different mass scales — in the two sectors may be present, and motivating precision
study of mixing and CP violation in the lepton sector.

9
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Figure 2.2: The neutrino mass eigenstate components of the known flavor eigenstates.

Neutrino oscillation arises from mixing between the flavor and mass eigenstates of neutrinos, corre-
sponding to the weak and gravitational interactions, respectively. This three-flavor-mixing scenario
can be described by a rotation between the weak-interaction eigenstate basis (νe, νµ, ντ ) and the
basis of states of definite mass (ν1, ν2, ν3). In direct correspondence with mixing in the quark sec-
tor, the transformations between basis states is expressed in the form of a complex unitary matrix,
known as the PMNS matrix :

νe
νµ
ντ

 =


Ue1 Ue2 Ue3
Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3


︸ ︷︷ ︸

UPMNS


ν1

ν2

ν3

 . (2.1) eqn:pmns0
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The PMNS matrix in full generality depends on just three mixing angles and a CP-violating phase.
The mixing angles and phase are designated as (θ12, θ23, θ13) and δCP. This matrix can be param-
eterized as the product of three two-flavor mixing matrices as follows, where cαβ = cos θαβ and
sαβ = sin θαβ:

UPMNS =


1 0 0
0 c23 s23

0 −s23 c23


︸ ︷︷ ︸

I


c13 0 eiδCPs13

0 1 0
−eiδCPs13 0 c13


︸ ︷︷ ︸

II


c12 s12 0
−s12 c12 0

0 0 1


︸ ︷︷ ︸

III

(2.2) eqn:pmns

The parameters of the PMNS matrix determine the probability amplitudes of the neutrino oscilla-10

tion phenomena that arise from mixing.11

12

The relationship between the three mixing angles θ12, θ23, and θ13 and the mixing between
the neutrino flavor and mass states can be described as follows

neutrinomatrix
[45]:

tan2 θ12 : amount of νe in ν2

amount of νe in ν1
(2.3)

tan2 θ23 : ratio of νµ to ντ in ν3 (2.4)

sin2 θ13 : amount of νe in ν3 (2.5)

The frequency of neutrino oscillation among the weak-interaction (flavor) eigenstates de-
pends on the difference in the squares of the neutrino masses, ∆m2

ij ≡ m2
i −m2

j ; a set of
three neutrino mass states implies two independent mass-squared differences (∆m2

21 and
∆m2

32). The ordering of the mass states is known as the neutrino mass hierarchy. An order-
ing of m1 < m2 < m3 is known as the normal hierarchy since it matches the ordering of
the quarks in the Standard Model, whereas an ordering of m3 < m1 < m2 is referred to as
the inverted hierarchy.

Since each flavor eigenstate is a mixture of three mass eigenstates, there can be an overall
phase difference between the quantum states, referred to as δCP. A nonzero value of this
phase implies that neutrinos and antineutrinos oscillate differently — a phenomenon known
as charge-parity (CP) violation. δCP is therefore often referred to as the CP phase or the
CP-violating phase.

13

The entire complement of neutrino experiments to date has measured five of the mixing parameters:14

the three angles θ12, θ23 and (recently) θ13, and the two mass differences ∆m2
21 and ∆m2

32. The sign15

of ∆m2
21 is known, but not that of ∆m2

32, which is the crux of the mass hierarchy ambiguity. The16

values of θ12 and θ23 are large, while θ13 is smaller
An:2012bu
[46]. The value of δCP is unknown. The real17

values of the entries of the PMNS mixing matrix, which contains information on the strength of18
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flavor-changing weak decays in the lepton sector, can be expressed in approximate form as19

|UPMNS| ∼


0.8 0.5 0.2
0.5 0.6 0.6
0.2 0.6 0.8

 . (2.6) eq:pmnsmatrix

The three-flavor-mixing scenario for neutrinos is now well established. However, the mixing pa-20

rameters are not known to the same precision as are those in the corresponding quark sector, and21

several important quantities, including the value of δCP and the sign of the large mass splitting, are22

still undetermined. In addition, several recent anomalous experimental results count among their23

possible interpretations phenomena that do not fit this model
Aguilar:2001ty,AguilarArevalo:2007it,Aguilar-Arevalo:2013pmq,Mention:2011rk
[47,48,49,50].24

The relationships between the values of the parameters in the neutrino and quark sectors suggest
that mixing in the two sectors is qualitatively different. Illustrating this difference, the value of the
entries of the CKM quark-mixing matrix (analogous to the PMNS matrix for neutrinos, and thus
indicative of the strength of flavor-changing weak decays in the quark sector) can be expressed in
approximate form as

|VCKM| ∼


1 0.2 0.004

0.2 1 0.04
0.008 0.04 1

 (2.7) eq:ckmmatrix

and compared to the entries of the PMNS matrix given in Equation
eq:pmnsmatrix
2.6. As discussed in

King:2014nza
[51], the25

question of why the quark mixing angles are smaller than the lepton mixing angles is an important26

part of the “flavor problem.”27

Quoting the discussion in
deGouvea:2013onf
[20], “while the CKM matrix is almost proportional to the identity matrix28

plus hierarchically ordered off-diagonal elements, the PMNS matrix is far from diagonal and, with29

the possible exception of the Ue3 element, all elements are O(1).” One theoretical method often1

used to address this question involves the use of non-Abelian discrete subgroups of SU(3) as flavor2

symmetries; the popularity of this method comes partially from the fact that these symmetries can3

give rise to the nearly tri-bi-maximal∗ structure of the PMNS matrix. Whether employing these4

flavor symmetries or other methods, any theoretical principle that attempts to describe the funda-5

mental symmetries implied by the observed organization of quark and neutrino mixing — such as6

those proposed in unification models — leads to testable predictions such as sum rules between7

CKM and PMNS parameters
deGouvea:2013onf,Mohapatra:2005wg,King:2014nza,Albright:2006cw
[20,42,51,53]. Data on the patterns of neutrino mixing are already8

proving crucial in the quest for a relationship between quarks and leptons and their seemingly ar-9

bitrary generation structure. Table
tab:params
2.1 displays the comparison between quark and lepton mixing10

∗Tri-bi-maximal mixing refers to a form of the neutrino mixing matrix with effective bimaximal mixing of νµ and ντ
at the atmospheric scale (L/E ∼ 500 km/ GeV) and effective trimaximal mixing for νe with νµ and ντ at the solar
scale (L/E ∼ 15,000 km/ GeV)

Harrison:2002er
[52].
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in terms of the fundamental parameters and the precision to which they are known†, highlighting11

the limited precision of the neutrino-mixing parameter measurements.12

Table 2.1: Best-fit values of the neutrino mixing parameters in the PMNS matrix (assumes normal hierarchy)
from

Fogli:2012ua
[54], their 1σ uncertainties and comparison to the analogous values in the CKM matrix

Beringer:1900zz
[55]. ∆M2 is

defined as m2
3 − (m2

1 +m2
2)/2.

Parameter Value (neutrino PMNS matrix) Value (quark CKM matrix)
θ12 34± 1◦ 13.04± 0.05◦

θ23 38± 1◦ 2.38± 0.06◦

θ13 8.9± 0.5◦ 0.201± 0.011◦

∆m2
21 +(7.54± 0.22)× 10−5 eV2

|∆M2| (2.43+0.10
−0.06)× 10−3 eV2 m3 >> m2

δCP −170± 54◦ 67± 5◦
tab:params

Clearly much work remains in order to complete the standard three-flavor mixing picture, partic-13

ularly with regard to θ23 (is it less than, greater than, or equal to 45◦?), mass hierarchy (normal14

or inverted?) and δCP. Additionally, there is great value in obtaining a set of measurements for15

multiple parameters from a single experiment, so that correlations and systematic uncertainties can16

be handled properly. Such an experiment would also be well positioned to extensively test the17

standard picture of three-flavor mixing. LBNE is designed to be this experiment.18

2.2.1 CP Violation in the Quark and Lepton Sectors19

sec:cpv-quark-lepton

In the particular parameterization of the PMNS matrix shown in Equation
eqn:pmns
2.2, the middle factor,

labeled ‘II’, describes the mixing between the ν1 and ν3 mass states, and depends on the CP-
violating phase δCP. In the three-flavor model, leptonic CP violation in an oscillation mode occurs
due to the interference of contributions from terms in this factor — some of which contain δCP

(i.e., involve the ν1-ν3 mixing directly) and some of which do not. The presence of nonzero CP-
odd terms, e.g., Equation

eqn:papprox3
2.15, (which requires δCP 6= 0 or π) in the interference patterns would

result in an asymmetry in neutrino versus antineutrino oscillations. The magnitude of the CP-
violating terms in the oscillation depends most directly on the size of the Jarlskog Invariant

Jarlskog:1985cw
[56],

a function that was introduced to provide a measure of CP violation independent of mixing-matrix
parameterization. In terms of the three mixing angles and the (as yet unmeasured) CP-violating
phase, the Jarlskog Invariant is:

JPMNS
CP ≡ 1

8 sin 2θ12 sin 2θ13 sin 2θ23 cos θ13 sin δCP. (2.8)

†A global fit
Fogli:2012ua
[54] to existing results from current experiments sensitive to neutrino oscillation effects is the source for

the PMNS matrix values.
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The relatively large values of the mixing angles in the lepton sector imply that leptonic CP-20

violation effects may be quite large — depending on the value of the phase δCP, which is currently21

unknown. Experimentally, it is unconstrained at the 2σ level by the global fit
Fogli:2012ua
[54]. Many theoreti-22

cal models, examples of which include
Meroni:2012ty,Ding:2013bpa,Luhn:2013lkn,Ding:2013nsa,Antusch:2013wn,King:2013hoa
[57,58,59,60,61,62], provide predictions for δCP, but these23

predictions range over all possible values so do not yet provide any guidance.24

Given the current best-fit values of the mixing angles
Fogli:2012ua
[54] and assuming normal hierarchy,

JPMNS
CP ≈ 0.03 sin δCP. (2.9)

This is in sharp contrast to the very small mixing in the quark sector, which leads to a very small
value of the corresponding quark-sector Jarlskog Invariant

Beringer:1900zz
[55],

JCKM
CP ≈ 3× 10−5, (2.10)

despite the large value of δCKM
CP ≈ 70◦.25

To date, all observed CP-violating effects have occurred in experiments involving systems of26

quarks, in particular strange and b-mesons
Beringer:1900zz
[55]. Furthermore, in spite of several decades of exper-27

imental searches for other sources of CP violation, all of these effects are explained by the CKM28

quark-mixing paradigm, and all are functions of the quark-sector CP phase parameter, δCKM
CP . In29

cosmology, successful synthesis of the light elements after the Big Bang
kolb94,weinberg08
[63,64] (Big Bang Nucle-30

osynthesis) requires that there be an imbalance in the number of baryons and antibaryons to one31

part in a billion when the Universe is a few minutes old
Steigman:2007xt
[65]. CP violation in the quark sector has32

not, however, been able to explain the observed Baryon Asymmetry of the Universe (BAU), due to33

the small value of JCKMCP .34

Baryogenesis
Fukugita:1986hr
[66] is a likely mechanism for generating the observed matter-antimatter asymmetry35

of our Universe. One way that it is elegantly achieved is by first having leptogenesis in the very36

early Universe. That mechanism can come about from the production and decay of very heavy37

right-handed neutrinos, if they are Majorana states (i.e. do not conserve lepton number‡), CP sym-1

metry is violated in their decays (thus distinguishing particles and antiparticles) and the Universe2

is in non-equilibrium. Leptogenesis will lead to an early dominance of antileptons over leptons.3

When the cooling Universe reaches the electroweak phase transition, T ∼ 250 GeV, a baryon4

number excess is generated from the lepton asymmetry by a B −L‡ conserving mechanism (anal-5

ogous to proton decay in that it violates B and L separately but conserves B − L) already present6

in the Standard Model.7

The heavy Majorana right-handed neutrino states that could give rise to leptogenesis in the very8

early Universe are also a natural consequence of the GUT-based seesaw mechanism
Yanagida:1980xy
[67] — the9

simplest and most natural explanation of the observed super-light neutrino mass scales. The seesaw10

‡In the Standard Model, lepton number (L) and baryon number (B) are conserved quantum numbers. Leptons have
B = 0 and L = 1 and antileptons have L = −1. A quark has L = 0 and B = 1/3 and an antiquark has B = −1/3.bnumber
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mechanism is a theoretical attempt to reconcile the very small masses of neutrinos to the much11

larger masses of the other elementary particles in the Standard Model. The seesaw mechanism12

achieves this unification by assuming an unknown new physics scale that connects the observed13

low-energy neutrino masses with a higher mass scale that involves very heavy sterile neutrino14

states. The seesaw mechanism as generator of neutrino mass is in addition to the Higgs mechanism15

that is now known to be responsible for the generation of the quark, charged lepton, and vector16

boson masses.17

The no-equilibrium leptogenesis ingredient is expected in a hot Big Bang scenario, but the Ma-18

jorana nature of the heavy neutrinos and needed CP violation can only be indirectly inferred19

from light neutrino experiments by finding lepton number violation (validating their Majorana20

nature via neutrinoless double-beta decay) and observing CP violation in ordinary neutrino oscil-21

lations.22
23

Recent theoretical advances have demonstrated that CP violation, necessary for the gener-
ation of the Baryon Asymmetry of the Universe at the GUT scale (baryogenesis), can be
directly related to the low-energy CP violation in the lepton sector that could manifest in
neutrino oscillations. As an example, the theoretical model described in

Pascoli:2006ci
[68] predicts that

leptogenesis, the generation of the analogous lepton asymmetry, can be achieved if

| sin θ13 sin δCP| & 0.11 (2.11) eqn:leptogenesis

This implies | sin δCP| & 0.7 given the latest global fit value of | sin θ13|
Capozzi:2013csa
[69].

24

The goal of establishing an experimental basis for assessing this possibility should rank very high25

on the list of programmatic priorities within particle physics, and can be effectively addressed by26

LBNE.27

2.2.2 Observation of CP-Violating Effects in Neutrino Oscillation Experiments28

sec:oscil-cpv

Whereas the Standard Model allows for violation of charge-parity (CP) symmetries in weak inter-29

actions, CP transformations followed by time-reversal transformations (CPT) are invariant. Under30

CPT invariance, the probabilities of neutrino oscillation and antineutrino oscillation are equivalent,31

i.e., P (νl → νl) = P (νl → νl) where l = e, µ, τ . Measurements of νl → νl oscillations in which32

the flavor of the neutrino before and after oscillations remains the same are referred to as disap-33

pearance or survival measurements. CPT invariance in neutrino oscillations was recently tested34

by measurements of νµ → νµ and νµ → νµ oscillations
Adamson:2011ch
[70]; no evidence for CPT violation was35

found. Therefore, asymmetries in neutrino versus antineutrino oscillations arising from CP viola-36

tion effects can only be accessed in appearance experiments, defined as oscillations of νl → νl′ , in37

which the flavor of the neutrino after oscillations has changed. Because of the intrinsic challenges1
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of producing and detecting ντ ’s, the oscillation modes νµ,e → νe,µ provide the most promising2

experimental signatures of leptonic CP violation.3

For νµ,e → νe,µ oscillations that occur as the neutrinos propagate through matter, as in terrestrial
long-baseline experiments, the coherent forward scattering of νe’s on electrons in matter modifies
the energy and path-length dependence of the vacuum oscillation probability in a way that de-
pends on the magnitude and sign of ∆m2

32. This is the Mikheyev-Smirnov-Wolfenstein (MSW)
effect

Mikheev:1986gs,Wolfenstein:1977ue
[71,72] that has already been observed in solar-neutrino oscillation (disappearance) experi-

ments
Bellini:2008mr,Bellini:2011rx,Aharmim:2011vm,Renshaw:2013
[73,74,75,76]. The oscillation probability of νµ,e → νe,µ through matter, in a constant density

approximation, keeping terms up to second order in α ≡ |∆m2
21|/|∆m2

31| and sin2 θ13, is
Freund:2001pn,Beringer:1900zz
[77,55]:

P (νµ → νe) ∼= P (νe → νµ) ∼= P0 + Psin δ︸ ︷︷ ︸
CP violating

+Pcos δ + P3 (2.12) eqn:papprox0

where4

P0 = sin2 θ23
sin2 2θ13

(A− 1)2 sin2[(A− 1)∆], (2.13)

P3 = α2 cos2 θ23
sin2 2θ12

A2 sin2(A∆), (2.14)

Psin δ = α
8Jcp

A(1− A) sin ∆ sin(A∆) sin[(1− A)∆], (2.15)

Pcos δ = α
8Jcp cot δCP

A(1− A) cos ∆ sin(A∆) sin[(1− A)∆], (2.16)

and where
∆ = ∆m2

31L/4E, and A =
√

3GFNe2E/∆m2
31.

In the above, the CP phase δCP appears (via Jcp) in the expressions for Psin δ (the CP-odd term)5

which switches sign in going from νµ → νe to the νµ → νe channel, and Pcos δ (the CP-conserving6

term) which does not. The matter effect also introduces a neutrino-antineutrino asymmetry, the7

origin of which is simply the presence of electrons and absence of positrons in the Earth.8

Recall that in Equation
eqn:pmns
2.2, the CP phase appears in the PMNS matrix through the mixing of9

the ν1 and ν3 mass states. The physical characteristics of an appearance experiment are therefore10

determined by the baseline and neutrino energy at which the mixing between the ν1 and ν3 states11

is maximal, as follows:12

L(km)
Eν(GeV) = (2n− 1)π2

1
1.27×∆m2

31(eV2) (2.17)

≈ (2n− 1)× 510 km/GeV (2.18)

where n = 1, 2, 3... denotes the oscillation nodes at which the appearance probability is maximal.13

The dependences on Eν of the oscillation probability for the LBNE baseline of L =1,300 km are14

plotted on the right in Figures
fig:oscnodes1a
2.3 and

fig:oscnodes1b
2.4. The colored curves demonstrate the variation in the νe15

appearance probability as a function of Eν , for three different values of δCP.16
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Figure 2.3: Neutrino oscillation probabilities as a function of energy and baseline, for different values of
δCP, normal hierarchy. The oscillograms on the left show the νµ → νe oscillation probabilities as a function
of baseline and energy for neutrinos (top left) and antineutrinos (bottom left) with δCP = 0. The figures
on the right show the projection of the oscillation probability on the neutrino energy axis at a baseline of
1,300 km for δCP = 0 (red), δCP = +π/2 (green), and δCP = −π/2 (blue) for neutrinos (top right) and
antineutrinos (bottom right). The yellow curve is the νe appearance solely from the “solar term” due to ν1
to ν2 mixing as given by Equation

eqn:papprox2
2.14.

The variation in the νµ → νe oscillation probabilities with the value of δCP indicates that it is
experimentally possible to measure the value of δCP at a fixed baseline using only the observed
shape of the νµ → νe or the νµ → νe appearance signal measured over an energy range that
encompasses at least one full oscillation interval. A measurement of the value of δCP 6= 0 or π,
assuming that neutrino mixing follows the three-flavor model, would imply CP violation. The CP
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Figure 2.4: Neutrino oscillation probabilities as a function of energy and baseline, for different values of
δCP, inverted hierarchy. The oscillograms on the left show the νµ → νe oscillation probabilities as a function
of baseline and energy for neutrinos (top left) and antineutrinos (bottom left) with δCP = 0. The figures
on the right show the projection of the oscillation probability on the neutrino energy axis at a baseline of
1,300 km for δCP = 0 (red), δCP = +π/2 (green), and δCP = −π/2 (blue) for neutrinos (top right) and
antineutrinos (bottom right).The yellow curve is the νe appearance solely from the “solar term” due to ν1 to
ν2 mixing as given by Equation

eqn:papprox2
2.14.

asymmetry, ACP , is defined as

ACP = P (νµ → νe)− P (νµ → νe)
P (νµ → νe) + P (νµ → νe)

. (2.19) eqn:cp-asymm
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In the three-flavor model the asymmetry can be approximated to leading order in ∆m2
21 as

Marciano:2006uc
[78]:

ACP ∼
cos θ23 sin 2θ12sin δCP

sin θ23 sin θ13

(
∆m2

21L

4Eν

)
+ matter effects (2.20) eqn:cpasym

Regardless of the value obtained for δCP, it is clear that the explicit observation of an asymmetry17

between P (νl → νl′) and P (νl → νl′) is sought to directly demonstrate the leptonic CP violation18

effect that a value of δCP different from zero or π implies. For long-baseline experiments such as19

LBNE, where the neutrino beam propagates through the Earth’s mantle, the leptonic CP-violation20

effects must be disentangled from the matter effects.21

2.2.3 Probing the Neutrino Mass Hierarchy via the Matter Effect22

ssec:matter:effects:mass:hier

The asymmetry induced by matter effects as neutrinos pass through the Earth arises from the23

change in sign of the factors proportional to ∆m2
31 (namely A, ∆ and α; Equations

eqn:papprox0
2.12 to

eqn:papprox4
2.16)1

in going from the normal to the inverted neutrino mass hierarchy. This sign change provides a2

means for determining the currently unknown mass hierarchy. The oscillation probabilities given3

in these approximate equations for νµ → νe as a function of baseline in kilometers and energy in4

GeV are calculated numerically with an exact formalism
nuosc
[79] and shown in the oscillograms of5

Figure
fig:oscnodes1a
2.3 and

fig:oscnodes1b
2.4 for δCP = 0, for normal and inverted hierarchies, respectively. The oscillograms6

include the matter effect, assuming an Earth density and electron fraction described by
PREM
[80]. These7

values are taken as a constant average over paths through regions of the Earth with continuous8

density change. Any baseline long enough to pass through a discontinuity is split into three or9

more segments each of constant average density and electron fraction. The solid black curves10

in the oscillograms indicate the location of the first and second oscillation maxima as given by11

Equation
eqn:nodes
2.18, assuming oscillations in a vacuum; matter effects will change the neutrino energy12

values at which the mixing between the ν1 and ν3 mass states is maximal.13
14

The significant impact of the matter effect on the νµ → νe and νµ → νe oscillation probabil-
ities at longer baselines (Figures

fig:oscnodes1a
2.3 and

fig:oscnodes1b
2.4) implies that νe appearance measurements over

long distances through the Earth provide a powerful probe into the neutrino mass hierarchy
question: is m1 > m3 or vice-versa?

15

The dependence of the matter effect on the mass hierarchy is illustrated in the oscillograms plotted16

on the left hand side of Figures
fig:oscnodes1a
2.3 and

fig:oscnodes1b
2.4, and can be characterized as follows:17

◦ For normal hierarchy, P (νµ → νe) is enhanced and P (νµ → νe) is suppressed. The effect18

increases with baseline at a fixed L/E.19

◦ For inverted hierarchy, P (νµ → νe) is suppressed and P (νµ → νe) is enhanced. The effect20

increases with baseline at a fixed L/E.21
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◦ The matter effect has the largest impact on the probability amplitude at the first oscillation22

maximum.23

◦ The matter effect introduces a phase shift in the oscillation pattern, shifting it to a lower24

energy for a given baseline when the hierarchy changes from normal to inverted. The shift is25

approximately −100 MeV.26

2.2.4 Disentangling CP-Violating and Matter Effects27

In Figure
fig:oscnodes2
2.5, the asymmetries induced by matter and maximal CP violation (at δCP = ±π/2) are28

shown separately as 2D oscillograms in baseline and neutrino energy. The matter effect induces an29

asymmetry in P (νl → νl′) and P (νl → νl′) that adds to the CP asymmetry. At longer baselines30

(> 1000 km), the matter asymmetry in the energy region of the first oscillation node is driven31

primarily by the change in the νe appearance amplitude. At shorter baselines (O(100 km)) the1

asymmetry is driven by the phase shift. The dependence of the asymmetry on baseline and energy,2

where the oscillation probabilities peak and the appearance signals are largest, can be approximated3

as follows:4

Acp ∝ L/E, (2.21)

Amatter ∝ L× E. (2.22)

The phenomenology of νµ → νe oscillations described in Section
sec:oscil-cpv
2.2.2 implies that the experimen-5

tal sensitivity to CP violation and the mass hierarchy from measurements of the total asymmetry6

between P (νl → νl′) and P (νl → νl′) requires the disambiguation of the asymmetry induced7

by the matter effect and that induced by CP violation. This is particularly true for experiments8

designed to access mixing between the ν1 and ν3 mass states using neutrino beams of O(1 GeV).9

Such beams require baselines of at least several hundred kilometers, at which the matter asymme-10

tries are significant. The currently known values of the oscillation parameters permit calculation11

of the magnitude of the matter asymmetry within an uncertainty of < 10%; only the sign of the12

asymmetry, which depends on the sign of ∆m2
31, is unknown. Since the magnitude of the mat-13

ter asymmetry is known, baselines at which the size of the matter asymmetry exceeds that of the14

maximal possible CP asymmetry are required in order to separate the two effects.15

Figure
fig:oscnodes4
2.6 illustrates the ambiguities that can arise from the interference of the matter and CP16

asymmetries. The plots show the total asymmetry as a function of δCP at four baseline values17

(clockwise from top left): 290 km, 810 km, 2,300 km and 1,300 km. The curves in black and red18

illustrate the asymmetries at the first and second oscillation nodes, respectively. The solid lines19

represent normal hierarchy, and the dashed lines represent inverted hierarchy. The plots demon-20

strate that experimental measurements of the asymmetry (Equation
eqn:cp-asymm
2.19) at the first oscillation21

node could yield ambiguous results for short baselines if the hierarchy is unknown. This occurs in22

regions of the (L,E, δCP) phase space where the matter and CP asymmetries cancel partially or23
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Figure 2.5: The ν/ν oscillation probability asymmetries as a function of baseline. The top two figures show
the asymmetry induced by the matter effect only for normal (top left) and inverted (top right) hierarchies.
The bottom figures show the asymmetry induced through the CP-violating phase δCP in vacuum, for δCP =
+π/2 (bottom left) and δCP = −π/2 (bottom right)

totally. For example, the green lines in Figure
fig:oscnodes4
2.6 indicate the asymmetry at the first node for max-24

imal CP violation (δCP = π/2) with an inverted hierarchy. At a baseline of 290 km, the measured25

asymmetry at δCP = π/2 (inverted hierarchy) is degenerate with that at δCP ∼ 0 (normal hierar-26

chy) at the first node. Measurements of the asymmetry at different L/E or at different baselines can27

break the degeneracies (Equation
eqn:asyms
2.22). At very long baselines, for which the matter asymmetry28

exceeds the maximal CP asymmetry at the first oscillation node, there are no degeneracies and the29

mass hierarchy and CP asymmetries can be resolved within the same experiment. For the current30
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best-fit values of the oscillation parameters, the matter asymmetry exceeds the maximal possible31

CP asymmetry at baselines of ≥ 1,200 km.
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Figure 2.6: The ν/ν oscillation probability asymmetries versus δCP at the first two oscillation nodes. Clock-
wise from top left: 290 km, 810 km, 2,300 km and 1,300 km. The solid/dashed black line is the total asym-
metry at the first oscillation node for normal/inverted hierarchy. The red lines indicate the asymmetries at
the second node.

32

2.2.5 Optimization of the Oscillation Baseline for CPV and Mass Hierarchy33

The simple arguments above suggest that a baseline≥ 1,200 km is required to search for CP viola-34

tion and determine the mass hierarchy simultaneously in a single long-baseline neutrino oscillation35

experiment. To understand the performance of a long-baseline experiment as a function of baseline36

using realistic neutrino beamline designs, a study of the sensitivities to CP violation and the mass37

hierarchy as a function of baseline was carried out using a neutrino beamline design optimized38

individually for each baseline. A 34-kt LArTPC neutrino detector at the far site was assumed since39

it has a high νe-identification efficiency that is flat over a large range of energies (Chapter
nu-oscil-chap
4). The1

beamline design was based on the NuMI beamline utilizing the 120-GeV, 1.2-MW proton beam2

from the Fermilab Main Injector and was fully simulated using GEANT3
Brun:1987ma
[82]. Varying the distance3

between the target and the first horn allowed selection of a beam spectrum that covered the first4
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Figure 2.7: The fraction of δCP values for which the mass hierarchy can be determined with an average
|∆χ2| = 25 or greater as a function of baseline (top) and the fraction of δCP values which CP violation
can be determined at the 3σ level or greater as a function of baseline (bottom). A NuMI based beam design
with a 120-GeV beam was optimized for each baseline. Projections assume sin2 2θ13 = 0.09 and a 34-kt
LArTPC as the far detector

LBNEreconfigPWG
[81]. An exposure of 3yrs+3yrs of neutrino+antineutrino running with 1.2-MW

beam power is assumed.

oscillation node and part of the second. The design incorporated an evacuated decay pipe of 4-m5

diameter and a length that varied from 280 to 580 m. For baselines less than 1,000 m, the oscillation6

occurs at neutrino energies where on-axis beams produce too little flux. Therefore, off-axis beams7

— which produce narrow-band, low-energy neutrino fluxes — were simulated for these baselines,8

with the off-axis angle chosen to provide the most coverage of the first oscillation node. The re-9
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sults of this study
LBNEreconfigPWG
[81] are summarized in Figure

fig:BLcpfrac
2.7. The sensitivity to CP violation (bottom plot)10

assumes that the mass hierarchy is unknown. An updated study with more detail is available
Bass:2013vcg
[83].11

The baseline study indicates that with realistic experimental conditions, baselines between 1,00012

and 1,300 km are near optimal for determination of CP violation. With baselines > 1,500 km, the13

correct mass hierarchy could be determined with a probability greater than 99% for all values of14

δCP with a large LArTPC far detector. However, at very long baselines, in one of the neutrino15

beam polarities (ν/ν for inverted/normal hierarchy) the event rate suppression due to the matter16

effect becomes very large, making it difficult to observe an explicit CP-violation asymmetry.17

2.2.6 Physics from Precision Measurements of Neutrino Mixing18

Precision measurements of the neutrino mixing parameters in long-baseline oscillations not only19

reveal the neutrino mixing patterns in greater detail, but also serve as probes of new physics that20

manifests as perturbations in the oscillation patterns driven by three-flavor mixing.21

The determination of whether there is maximal mixing between νµ and ντ — or a measurement22

of the deviation from maximal — is of great interest theoretically
Luhn:2013lkn,Raidal:2004iw,Minakata:2004xt,Smirnov:2013uba,Harada:2013aja,Hu:2012eb
[59,84,85,86,87,88]. Models of23

quark-lepton universality propose that the quark and lepton mixing matrices (Equations
eq:ckmmatrix
2.7 and24

eq:pmnsmatrix
2.6, respectively) are given by25

UCKM = 1 + εCabbibo and (2.23)

UPMNS = T + εCabbibo, (2.24)

where T is determined by Majorana physics
ramond_isoups
[89] and εCabbibo refers to small terms driven by the26

Cabbibo weak mixing angle (θC = θCKM
12 ). In such models θ23 ∼ π/4 + ∆θ, where ∆θ is of order27

the Cabbibo angle, θC , and θ13 ∼ θC/
√

2. It is therefore important to determine experimentally28

both the value of sin2 θ23 and the octant of θ23 if θ23 6= 45◦.29
30

Studying νµ disappearance probes sin2 2θ23 and |∆m2
32| with very high precision. Disap-

pearance measurements can therefore determine whether νµ-ντ mixing is maximal or near
maximal such that sin2 2θ23 = 1, but they cannot resolve the octant of θ23 if νµ-ντ mixing is
less than maximal. Combining the νµ disappearance signal with the νe appearance signal can
help determine the θ23 octant and constrain some of the theoretical models of quark-lepton
universality.

31

Direct unitarity tests, in which the individual components of the PMNS matrix are measured sepa-32

rately, are challenging due to limited experimentally available oscillation channels
Antusch:2006vwa,Qian:2013ora
[90,91]. Appli-33

cation of the “proof by contradiction” principle offers another way to perform the unitarity tests.34

In these tests, the mixing angles are extracted from the data by assuming unitarity in the standard35
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three-flavor framework. If measurements of the same mixing angle by two different processes are36

inconsistent, then the standard three-flavor framework is insufficient and new physics beyond this1

framework is required. Observation of unitarity violation will constrain the phase space of possi-2

ble new physics. In particular, the precision measurement of sin2 2θ13 provides the most promising3

unitarity test
Qian:2013ora
[91] for the PMNS matrix. It is important to note that several theoretical models of4

new physics, such as the existence of sterile neutrinos or nonstandard interactions, could lead to ap-5

parent deviations of the sin2 2θ13 value measured in νe appearance experiments from that measured6

in reactor (νe disappearance) experiments.7

Precision measurements of νµ and νµ survival over long baselines could reveal nonstandard physics8

driven by new interactions in matter. Examples of some of these effects and the experimental9

signatures in long-baseline oscillations are discussed in Chapter
nu-oscil-chap
4.10

In addition, experiments with long enough baselines and sufficient neutrino flux at Eν > 3 GeV,11

coupled with high-resolution tracking detectors, as in the LBNE design, can also probe νµ → ντ12

appearance with higher precision than is currently possible using ντ charged-current interactions.1

The combination of νµ → νµ, νµ → νe, and νµ → ντ can ultimately over-constrain the three-flavor2

model of neutrino oscillations both in neutrino and antineutrino modes.3

2.2.7 Oscillation Physics with Atmospheric Neutrinos4
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Figure 2.8: The atmospheric neutrino flux in neutrinos per second per square centimeter as a function of
neutrino energy for different flavors (left). The atmospheric neutrino spectrum per GeV per kt per year for
the different species (right).

Atmospheric neutrinos are unique among sources used to study oscillations; the flux contains neu-5

trinos and antineutrinos of all flavors, matter effects play a significant role, both ∆m2 values con-6

tribute to the oscillation patterns, and the oscillation phenomenology occurs over several orders7

of magnitude in both energy (Figure
fig:atmflux
2.8) and path length. These characteristics make atmospheric8

neutrinos ideal for the study of oscillations and provide a laboratory suitable to search for exotic9

phenomena for which the dependence of the flavor-transition and survival probabilities on energy10
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and path length can be defined. The probabilities of atmospheric νµ → νe and νµ → νe oscillations11

for normal and inverted hierarchies are shown as a function of zenith angle in Figure
fig:oscatm
2.9.
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Figure 2.9: The probabilities of atmospheric νµ → νe (left) and νµ → νe (right) oscillations for normal
(top) and inverted (bottom) hierarchies as a function of zenith angle.

12

Even with dedicated long-baseline experiments exploring the large mass splitting (∆m2
32) for13

nearly a decade, atmospheric data continue to contribute substantially to our understanding of14

the neutrino sector. Broadly speaking:15

◦ The data demonstrate complementarity with beam results via two- and three-flavor fits and16

the measurement of a ντ appearance signal consistent with expectations.17

◦ The data serve to increase measurement precision through global fits, given that the sensi-18

tivity of atmospheric neutrinos to the mass hierarchy is largely independent of δCP and the19

octant of θ23.20
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◦ New physics searches with atmospheric neutrinos have placed limits on CPT violation, non-21

standard interactions, mass-varying neutrinos and Lorentz-invariance violation.22

Atmospheric neutrinos can continue to play these roles in the LBNE era given LBNE’s deep-23

underground far detector. In particular, complementarity will be vital in a future where, worldwide,24

the number of high-precision, long-baseline beam/detector facilities is small. The physics potential25

of a large underground liquid argon detector for measuring atmospheric neutrinos is discussed in26

Section
atmnu
4.6.27

2.3 Nucleon Decay Physics Motivated by Grand Unified28

Theories29

ss:bnonconservation
1

Searches for proton decay, bound-neutron decay and similar processes such as di-nucleon
decay and neutron-antineutron oscillations test the apparent but unexplained conservation
law of baryon number. These decays are already known to be rare based on decades of prior
searches, all of which have produced negative results. If measurable event rates or even a
single-candidate event were to be found, it would be sensible to presume that they occurred
via unknown virtual processes based on physics beyond the Standard Model. The impact of
demonstrating the existence of a baryon-number-violating process would be profound.

2

2.3.1 Theoretical Motivation from GUTs3

The class of theories known as Grand Unified Theories (GUTs) make predictions about both1

baryon number violation and proton lifetime that may be within reach of the full-scope LBNE2

experiment. The theoretical motivation for the study of proton decay has a long and distinguished3

history
Pati:1973rp,Georgi:1974sy,Dimopoulos:1981dw
[92,93,94] and has been reviewed many times

Langacker:1980js,deBoer:1994dg,Nath:2006ut
[95,96,97]. Early GUTs provided the original4

motivation for proton decay searches in kiloton-scale detectors placed deep underground to limit5

backgrounds. The 22.5-kt Super–Kamiokande experiment extended the search for proton decay by6

more than an order of magnitude relative to the previous generation of experiments. Contemporary7

reviews
Raby:2008pd,Senjanovic:2009kr,Li:2010dp
[98,99,100] discuss the strict limits already set by Super–Kamiokande and the context of8

the proposed next generation of larger underground experiments such as Hyper-Kamiokande and9

LBNE.10

Although no evidence for proton decay has been detected, the lifetime limits from the current11

generation of experiments already constrain the construction of many contemporary GUT models.12

In some cases, these lifetime limits are approaching the upper limits allowed by GUT models. This13
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situation points naturally toward continuing the search with new, larger detectors. These searches14

are motivated by a range of scientific issues:15

◦ Conservation laws arise from underlying symmetries in Nature
Noether:1918zz
[101]. Conservation of baryon16

number is therefore unexplained since it corresponds to no known long-range force or sym-17

metry.18

◦ Baryon number non-conservation has cosmological consequences, such as a role in inflation19

and the matter-antimatter asymmetry of the Universe.20

◦ Proton decay is predicted at some level by almost all GUTs.21

◦ Some GUTs can accommodate neutrinos with nonzero mass and characteristics consistent22

with experimental observations.1

◦ GUTs incorporate other previously unexplained features of the Standard Model such as the2

relationship between quark and lepton electric charges.3

◦ The unification scale is suggested both experimentally and theoretically by the apparent1

convergence of the running coupling constants of the Standard Model. The unification scale2

is in excess of 1015 GeV.3

◦ The unification scale is not accessible by any accelerator experiment; it can only be probed4

by virtual processes such as with proton decay.5

◦ GUTs usually predict the relative branching fractions of different nucleon decay modes.6

Testing these predictions would, however, require a sizeable sample of proton decay events.7

◦ The dominant proton decay mode of a GUT is often sufficient to roughly identify the likely8

characteristics of the GUT, such as gauge mediation or the involvement of supersymmetry.9

10

The observation of even a single unambiguous proton decay event would corroborate the
idea of unification and the signature of the decay would give strong guidance as to the
nature of the underlying theory.

11

2.3.2 Proton Decay Modes12

From the body of literature, two decay modes (shown in Figure
pdk_feyn
2.10) emerge that dominate the13

LBNE experimental design. The more well-known of the two, the decay mode of p → e+π0,14

arises from gauge mediation. It is often predicted to have the higher branching fraction and is also15

demonstrably the more straightforward experimental signature for a water Cherenkov detector. In16
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Figure 2.10: Feynman diagrams for proton decay modes from supersymmetric GUT, p+ → K+ν (left) and
gauge-mediation GUT models, p+ → e+π0 (right).

this mode, the total mass of the proton is converted into the electromagnetic shower energy of the17

positron and two photons from π0 decay, with a net momentum vector near zero.18

The second key mode is p→ K+ν. This mode is dominant in most supersymmetric GUTs, many19

of which also favor additional modes involving kaons in the final state. This decay mode with a20

charged kaon is uniquely interesting; since stopping kaons have a higher ionization density than21

other particles, a LArTPC could detect it with extremely high efficiency, as described in Chapter
pdk-chap
5.22

In addition, many final states of K+ decay would be fully reconstructable in a LArTPC.23

There are many other allowed modes of proton or bound neutron into antilepton plus meson decay24

that conserve B − L§, but none of these will influence the design of a next-generation experiment.25

The most stringent limits, besides those on p → e+π0, include the lifetime limits on p → µ+π0
26

and p → e+η, both of which are greater than 4× 1033 years
Nishino:2012ipa
[102]. Any experiment that will do27

well for p→ e+π0 will also do well for these decay modes. The decays p→ νπ+ or n→ νπ0 may28

have large theoretically predicted branching fractions, but they are experimentally difficult due to29

the sizeable backgrounds from atmospheric-neutrino interactions. The decay p → µ+K0 can be30

detected relatively efficiently by either water Cherenkov or LArTPC detectors.31

A number of other possible modes exist, such as those that conserveB+L, that violate only baryon32

number, or that decay into only leptons. These possibilities are less well-motivated theoretically,33

as they do not appear in a wide range of models, and are therefore not considered here.34

Figure
PDK-limits-theory
2.11 shows a comparison of experimental limits, dominated by recent results from Super–35

Kamiokande to the ranges of lifetimes predicted by an assortment of GUTs. At this time, the theory1

literature does not attempt to precisely predict lifetimes, concentrating instead on suggesting the2

dominant decay modes and relative branching ratios. The uncertainty in the lifetime predictions3

comes from details of the theory, such as masses and coupling constants of unknown heavy parti-4

cles, as well as poorly known details of matrix elements for quarks within the nucleon.5

It is apparent from Figure
PDK-limits-theory
2.11 that a continued search for proton decay is by no means assured6

§In these models, the quantum number B − L is expected to be conserved even though B and L are not individually
conserved.
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Figure 2.11: Proton decay lifetime limits
Beringer:1900zz,Nishino:2012ipa
[55,102] compared to lifetime ranges predicted by Grand Unified

Theories. The upper section is for p → e+π0, most commonly caused by gauge mediation. The lower
section is for SUSY-motivated models, which commonly predict decay modes with kaons in the final state.
The marker symbols indicate published experimental limits, as indicated by the sequence and colors on top
of the figure.

of obtaining a positive result. With that caveat, an experiment with sensitivity to proton lifetimes7

between 1033 and 1035 years is searching in the right territory over virtually all GUTs; even if no8

proton decay is detected, stringent lifetime limits will provide strong constraints on such models.9

Minimal SU(5) was ruled out by the early work of IMB and Kamiokande and minimal SUSY SU(5)10

is considered to be ruled out by Super–Kamiokande. In most cases, another order of magnitude in11

improved limits will not rule out specific models but will constrain their allowed parameters; this12

could allow identification of models which must be fine-tuned in order to accommodate the data,13

and are thus less favored.14

As Chapter
pdk-chap
5 will show, the performance and scalability of the LArTPC technology opens up15

nucleon decay channels that are not as readily accessible in existing and proposed water Cherenkov16

detectors, providing LBNE with a unique and compelling opportunity for discovery.17
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2.4 Supernova-Neutrino Physics and Astrophysics18

ss:snphysics

For over half a century, researchers have been grappling to understand the physics of the neutrino-19

driven core-collapse supernova. The interest in observing the core-collapse supernova explosion20

mechanism comes from the key role supernovae of this type have played in the history of the21

Universe. Without taking supernova feedback into account, for example, modern simulations of22

galaxy formation cannot reproduce the structure of our galactic disk. More poetically, the heavy23

elements that are the basis of life on Earth were synthesized inside stars and ejected by supernova24

explosions.25

Neutrinos from a core-collapse supernova are emitted in a burst of a few tens of seconds duration,26

with about half emitted in the first second. They record the information about the physical processes27

in the center of the explosion during the first several seconds — as it is happening. Energies are in28

the few-tens-of-MeV range and luminosity is divided roughly equally between flavors. The basic29

model of core collapse was confirmed by the observation of neutrino events from SN1987A, a30

supernova in the Large Magellanic Cloud — outside the Milky Way — 50 kpc (kiloparsecs) away.31

Nineteen events were detected in two water Cherenkov detectors
Bionta:1987qt,Hirata:1987hu
[103,104] and additional events32

were reported in a scintillator detector
Alekseev:1987ej
[105]. The neutrino signal from a core-collapse supernova33

in the Milky Way is expected to generate a high-statistics signal from which LBNE could extract a34

wealth of information
Scholberg:2007nu,Dighe:2008dq
[106,107].35

36

The expected rate of core-collapse supernovae is two to three per century in the Milky
Way

Tammann:1994ev,Cappellaro:1999qy
[108,109]. In a 20-year experimental run, LBNE’s probability of observing neutrinos

from a core-collapse supernova in the Milky Way is about 40%. The detection of thousands
of supernova-burst neutrinos from this event would dramatically expand the science reach of
the experiment, allowing observation of the development of the explosion in the star’s core
and probing the equation-of-state of matter at nuclear densities. In addition, independent
measurements of the neutrino mass hierarchy and the θ13 mixing angle are possible, as well
as additional constraints on physics beyond the Standard Model.

Each of the topics that can be addressed by studying supernova-burst neutrinos represent
important outstanding problems in modern physics, each worthy of a separate, dedicated
experiment, and the neutrino physics and astrophysics communities would receive payback
simultaneously. The opportunity of targeting these topics in a single experiment is very
attractive, especially since it may come only at incremental cost to the LBNE Project.

37

The explosion mechanism is thought to have three distinct stages: the collapse of the iron core,1

with the formation of the shock and its breakout through the neutrinosphere; the accretion phase,2

in which the shock temporarily stalls at a radius of about 200 km while the material keeps raining3

in; and the cooling stage, in which the hot proto-neutron star loses its energy and trapped lepton4
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number, while the re-energized shock expands to push out the rest of the star. Each of these three5

stages is predicted to have a distinct signature in the neutrino signal. Thus, it should be possible to6

directly observe, for example, how long the shock is stalled. More exotic features of the collapse7

may be observable in the neutrino flux as well, such as possible transitions to quark matter or to a8

black hole. (An observation in conjunction with a gravitational wave detection would be especially9

interesting; e.g.
Pagliaroli:2009qy,Ott:2012jq
[110,111].)10

Over the last two decades, neutrino flavor oscillations have been firmly established in solar neutri-11

nos and a variety of terrestrial sources. The physics of the oscillations in the supernova environment12

promises to be much richer than in any of the cases measured to date, for a variety of reasons:1

◦ Neutrinos travel through the changing profile of the explosion with stochastic density fluc-2

tuations behind the expanding shock and, due to their coherent scattering off of each other,3

their flavor states are coupled.4

◦ The oscillation patterns come out very differently for the normal and inverted mass hierar-5

chies.6

◦ The expanding shock and turbulence leave a unique imprint in the neutrino signal.7

◦ Additional information on oscillation parameters, free of supernova model-dependence, will8

be available if matter effects due to the Earth can be observed in detectors at different loca-9

tions around the world
Mirizzi:2006xx,Choubey:2010up
[112,113].10

◦ The observation of this potentially copious source of neutrinos will also allow limits on11

coupling to axions, large extra dimensions, and other exotic physics (e.g.,
Raffelt:1997ac,Hannestad:2001jv
[114,115]).12

◦ The oscillations of neutrinos and antineutrinos from a core-collapse supernova manifest very13

differently. In the neutrino channel, the oscillation features are in general more pronounced,14

since the initial spectra of νe and νµ (ντ ) are always significantly different. It would be15

extremely valuable to detect both neutrino and antineutrino channels with high statistics.1

Only about two dozen neutrinos were observed from SN1987A, which occurred in a nearby galaxy;2

in contrast, the currently proposed next-generation detectors would register thousands or tens of3

thousands of interactions from a core-collapse supernova in our galaxy. The type of observed inter-4

actions will depend on the detector technology: a water-Cherenkov detector is primarily sensitive5

to νe’s, whereas a LArTPC detector has excellent sensitivity to νe’s. In each case, the high event6

rate implies that it should be possible to measure not only the time-integrated spectra, but also their7

second-by-second evolution. This is a key feature of the supernova-burst physics potential of the8

planned LBNE experiment.9

Currently, experiments worldwide are sensitive primarily to νe’s, via inverse-beta decay on free10

protons, which dominates the interaction rate in water and liquid-scintillator detectors. Liquid ar-11

gon exhibits a unique sensitivity to the νe component of the flux, via the absorption interaction on12
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40Ar, νe + 40Ar → e− + 40K∗. In principle, this interaction can be tagged via the coincidence of13

the electron and the 40K∗ de-excitation gamma cascade. About 900 events would be expected in a14

10-kt fiducial liquid argon detector for a core-collapse supernova at 10 kpc. The number of signal15

events scales with mass and the inverse square of distance, as shown in Figure
fig:snevents
2.12. For a collapse

fig:snevents

Figure 2.12: Number of supernova neutrino interactions in a liquid argon detector as a function of distance
to the supernova for different detector masses. Core collapses are expected to occur a few times per century,
at a most-likely distance from 10 kpc to 15 kpc.

16

in the Andromeda galaxy, massive detectors of hundreds of kilotons would be required to observe17

a handful of events. However, for supernovae within the Milky Way, even a relatively small 10-kt18

detector would gather a significant νe signal.19

Because the neutrinos emerge promptly after core collapse, in contrast to the electromagnetic20

radiation which must beat its way out of the stellar envelope, an observation could provide a21

prompt supernova alert
Antonioli:2004zb,Scholberg:2008fa
[116,117], allowing astronomers to find the supernova in early light22

turn-on stages, which could yield information about the progenitor (in turn, important for23

understanding oscillations). Further, observations and measurements by multiple, geographically24

separated detectors during a core collapse — of which several are expected to be online over the25

next few decades
Scholberg:2007nu,Scholberg:2010zz
[106,118] — will enhance the potential science yield from such a rare and26

spectacular event
Mirizzi:2006xx
[112].27

28
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